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Power for T-Test Comparisons of Unbalanced
Cluster Exposure Studies

Donald R. Hoover

ABSTRACT Studies of individuals sampled in unbalanced clusters have become common
in health services and epidemiological research, but available tools for power/sample
size estimation and optimal design are currently limited. This paper presents and illus-
trates power estimation formulas for t-test comparisons of effect of an exposure at the
cluster level on continuous outcomes in unbalanced studies with unequal numbers of
clusters and/or unequal numbers of subjects per cluster in each exposure arm. Iterative
application of these power formulas obtains minimal sample size needed and/or mini-
mal detectable difference. SAS subroutines to implement these algorithms are given in
the Appendices. When feasible, power is optimized by having the same number of
clusters in each arm kA = kB and (irrespective of numbers of clusters in each arm) the
same total number of subjects in each arm nAkA = nBkB. Cost beneficial upper limits for
numbers of subjects per cluster may be approximately (5/ρ) − 5 or less where ρ is the
intraclass correlation. The methods presented here for simple cluster designs may be
extended to some settings involving complex hierarchical weighted cluster samples.

KEYWORDS Cluster Sampling, Power, Sample Size, T Tests, Unbalanced Designs.

INTRODUCTION

Cluster studies sample or treat individuals in clusters.1 Often, all individuals in the
cluster have the same exposure (or treatment) status, and the mean outcome of
the cluster has a normal or approximately normal distribution. Since exposure is
the same for all individuals in a cluster, this is denoted as a “cluster exposure” in
this article. We focus on simple (one-level) unweighted cluster studies of a binary
exposure with all individuals in the cluster having the same exposure status. Exten-
sions to hierarchical weighted cluster samples are described in Appendix 3.

Consider two examples of simple cluster exposure studies. For example 1, in a
study of effect of neighborhood crime on mental health status in New York City,
10 individuals may be sampled from each of 400 neighborhoods (the cluster), of
which 100 are “high crime exposure” and 300 are “low crime exposure” neighbor-
hoods. Mean mental health status would be compared between the high crime ex-
posure and low crime exposure neighborhoods. For example 2, in a study of the
effect of support group size (10 vs. 30 individuals) on behavioral intervention to
reduce sexually transmitted disease (STD) spread, 300 individuals may be randomly
placed into support groups of size 10 (for a total of 30 groups), while another 300
are randomly placed into 10 support groups of size 30. Postintervention mean sex-
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ual risk behavior score will be compared between each of these two support group
size arms (cf. Susser et al.2).

When sampling (or intervening) in clusters, subjects from the same cluster can
be positively correlated with each other. Hence, the cluster is the unit of analysis,
and the cluster effect must be adjusted.3,4 While this depends on the nature of the
clustering, intracluster correlation ρ tends to be higher for smaller clusters,3 perhaps
as individuals in smaller clusters have more contact with each other. In most appli-
cations,4,5 ρ is no greater than 0.6. Standard formulas for estimation of study power
and sample size that require observations to be independent4,6 cannot be used for
cluster studies with ρ > 0. Power and sample size estimates have been presented for
cluster studies with equal numbers of clusters and the same number of subjects per
cluster in both arms.4,7–9 However, frequently in epidemiologic and health outcomes
research (such as examples 1 and 2 above), cluster studies will be unbalanced, with
either the number of clusters and/or the number of individuals per cluster differing
between comparison arms. We present power formulas for such unbalanced cluster
exposure designs.

NOTATION AND ASSUMPTIONS

Assume kA clusters in exposure arm A and nA subjects in each cluster of arm A.
Similarly, assume kB clusters in exposure arm B and nB subjects per cluster of arm
B. The total number of subjects is N = kA(nA) + kB(nB). When nA = nB, the common
value is denoted n. Let XAij and XBij be the jth observation from the ith cluster in
arms A and B, respectively. Because of the cluster effect, there are two components
of variance for each observation: XAij = uA + γAi + εAij, where uA is the overall mean
for arm A, γAi is a random effect of cluster i from arm A with γAi � N(o,σ2

i),and εAij

is the random effect of the jth individual in the ith cluster of arm A with εAij �
N(o,σ2

j). Similarly, XBij = uB + γBi + εBij, with uB the overall mean for arm B, γBi �
N(o,σ2

i) a random effect of cluster i from arm B and εBij � N(o,σ2
j) the random

effect of the jth individual in the ith cluster of arm B. All random components are
independent.

The overall variance of an observation is σ2 = σ2
i + σ2

j, and the correlation of
two observations from the same cluster ρ = σ2

i/(σ2
i + σ2

j) is between 0 and 1. Thus,

XA,i = ∑
na

j=1
XAij/nA and XB,i = ∑

nB

j=1
XBij/nB (the means of the ith clusters in arms A and B,

respectively) have expectations µA and µB, respectively, and variances σ2(1/nA + ρ(1
− 1/nA)) and σ2(1/nB + ρ(1 − 1/nB)), respectively, or σ2(1/n + ρ(1 − 1/n)) for both
when the number of subjects per cluster is equal for both arms.

We test the null hypothesis Ho : µA = µB either against a two-sided alternative
Ha : µA ≠ µB or against a one-sided alternative Ha : µA < µB or Ha : µa > µB using a two-
sample t test. A more complicated approach to make this comparison would be a
nested one-way analysis of variance (ANOVA) or hierarchical model that weighted
cluster means by cluster size.10,11 For example 1, nA = nB (see the section “Power
With Equal Group Sizes but Unequal Numbers of Clusters per Arm”), the nested
ANOVA and two-sample t tests give identical results. For example 2, nA ≠ nB (see
the section, “Power for Studies With Unequal Group Sizes and/or Numbers of Clus-
ters per Arm”), the standard nested ANOVA model is not valid.12 While a Satter-
thwaite13 approach would create a more unbiased nested ANOVA test, this would
be hard to implement in practice and, unlike the two-sample t test, is not robust to
cluster exposure arms having different intraclass correlations.



280 HOOVER

TWO-SAMPLE T-TEST STATISTICS FOR COMPARISONS
OF CLUSTERS

The test statistic tr is constructed from the cluster means as the clusters are the
smallest independent units: If variances of the cluster means are equal for clusters
from exposure arms A and B, (i.e., when nA = nB = n), then

tr = XA − XB

Sp√1/kA + 1/kB

where

XA = ∑XA,i

kA

, XB = ∑XB,i

kB

Sp = √∑(XA,i − XA)
2 + ∑(XB,i − XB)

2

(kA − 1) + (kB − 1)
and r = kA + kB − 2. (1)

The test statistic tr from Eq. 1 has a central t distribution with r degrees of freedom
(df).6 In Eq. 1, Sp

2/kA estimates the variance of XA and Sp
2/kB the variance of XB, so

Sp√1/kA + 1/kB estimates the standard deviation of XA − XB. As variances of cluster
means in arms A and B are equal, we use a combined estimator SP

2.
Variances of the cluster means differ for clusters in exposure arms A and B

when nA ≠ nB, thus the test statistic tr is

tr = XA − XB

√S2
A/kA + S2

B/kB

where

XA = ∑Xi,A

kA

, SA = √∑(Xi,A − XA)
2

kA − 1
, XB = ∑Xi,B

kB

SB = √∑(Xi,B − XB)
2

kB − 1
and r = (S2

A/kA + S2
B/kB)

2

(S4
A/(k

2
A(kA − 1)) + S4

B/(k
2
B(kB − 1)))

. (2)

By Satterthwaite’s13 method, the test statistic tr from Eq. 2 has an approximate
central t distribution with r degrees of freedom. As cluster mean variance differs
between arms A and B, SA

2/kA estimates the variance of XA, SB
2/kB estimates the vari-

ance of XB, and √S2
A/kA + S2

B/kB estimates the standard deviation of XA − XB.
For both Eq. 1 and Eq. 2, the df, r reflect imprecision in tr resulting from the

fact that estimates of the cluster mean standard deviations (Sp, SA, and SB) rather
than the true standard deviations being used. Estimates are more precise for larger
values of r. For r > 120, both Eq. 1 and Eq. 2 have approximate standard normal
distributions.6
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Figure 1 gives a diagram of the of the distribution of the test statistic in either
Eq. 1 or Eq. 2 and rejection regions chosen to make the (two-sided) type I error
equal to α = .05; r = 22 df is used for illustrative purposes.

We refer to the lower and upper t values associated with the rejection as tr(α/
2) and tr(1 − α/2), respectively. Since central t distributions are symmetric about
zero, tr(α/2) = −tr(1 − α/2), and we reject the null hypothesis at a given type I error
α when the absolute value of the test statistic from Eq. 1 or Eq. 2 exceeds tr(1 − α/
2). Making α smaller increases the value of tr(1 − α/2) needed to provide an overall
type I error α. In Fig. 1, the numerical value of t22(1 − 0.05/2) is 2.074. For one-
sided testing with an alternative hypothesis, rejection of Ho : µA > µB occurs if the
test statistic exceeds tr(1 − α).

BASIC FORMULA FOR POWER

The power of a study for a specified level of the alternative hypothesis is defined
as 1 − β, where β is the type II error or, equivalently, the probability the test statistic
will fall into the appropriate rejection region if the alternative hypothesis is true at
a specified level. A minimal significant value ∆ (or a likely value for ∆) is chosen
such that µA − µB = ∆ under the specified level of Ha. Without loss of generality, let
∆ > 0 and the appropriate rejection region be greater than t1−α/2; we could reverse
the labels of A and B if ∆ was negative. If this level of Ha is true, then the test
statistic has a noncentral t distribution with r degrees of freedom (the same value
of r as for the distribution of the test statistic in Eqs. 1 and 2 under the null hypoth-
esis) and a noncentrality parameter Φ where Φ = ∆/Std Dev (XA − XB). The mean of

FIGURE 1. Rejection region for a t test with r = 22 df and two-sided α = .05.



282 HOOVER

a noncentral t variable is approximately equal to Φ; this Φ indicates how many
standard deviations of the test statistic the alternative hypothesis is from the null
hypothesis. Figure 2 shows the rejection region of the null hypothesis for df = 22
and α = .05 along with the probability for the test statistic to fall into the upper
rejection region when Φ = 3, or the alternative mean is three standard deviations of
the test statistic greater than the null hypothesis mean of zero.

Remember that 2.074 = t22(1 − .05/2), which defines the two-sided rejection re-
gion with an overall type I error of 0.05. If the specified alternative hypothesis is
true with Φ [or ∆/Std Dev (XA − XB)] equal to 3, then the probability the test statis-
tic does not exceed the rejection value of 2.074 (or the type II error under the
specified alternative hypothesis) is the probability that a noncentral t distribution
with 22 df and noncentrality parameter 3 is less than 2.074. We denote this proba-
bility as t−1

22,3 (2.074), where 22 is df, 3 is the noncentrality parameter, and the in-
verse superscript (t−1) in t−1

22,3(2.074) is the probability that a noncentral t distribution
with df = 22 and Φ = 3 is 2.074 or less. As Fig. 2 shows, for a given type I error α,
df(r), minimal significant value for Ha :∆, and Std Dev(XA − XB), the power to detect
the alternative hypothesis is

1 − β = 1 − t−1
r,Φ[tr(1 − α/2)] (or 1 − t−1

r,Φ[tr(1 − α)] for one sided testing).
(3)

where Φ = ∆/Std Dev(XA − XB). From examining Fig. 2, everything else being equal:
(1) decreasing α increases tr(1 − α/2), which makes the formula of Eq. 3 smaller; (2)

FIGURE 2. Rejection region for a t test with r = 22 df, α = .05, and corresponding type II error
under alternative hypothesis with noncentrality parameter Φ = 3.
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increasing ∆ increases Φ, which makes Eq. 3 larger; and (3) increasing Std Dev(XA −
XB) decreases Φ, which makes Eq. 3 smaller. Increasing r reduces the size of the
tails for central and noncentral t distributions, which often (but not always) makes
Eq. 3 larger.

As the shape of a noncentral t distribution is similar to that of a central t
distribution with the same degrees of freedom, Eq. 3 can be approximated by 1 −
β = t−1

r[tr(1 − α/2) − Φ]. For r > 120, t distributions can also be approximated by the
normal distribution, and Eq. 3 is equivalent to Z−1[Φ − Z1−α/2], where Z−1[ � ] denotes
the probability a standard normal variable is less than [ � ]. In the examples used in
this paper, powers from normal and central t approximations to the noncentral t
distribution were within 0.02 of the exact powers from Eq. 3, although deviations
will be greater for smaller r.

For calculation of power of the unbalanced cluster designs described in the
introduction, Eq. 3 can be directly applied with appropriate values of r and Φ
according to the study design, as described in the next two sections.

POWER WITH EQUAL GROUP SIZES BUT UNEQUAL
NUMBERS OF CLUSTERS PER ARM

In the setting of power with equal group sizes but unequal numbers of clusters per
arm, Var(XA,i) ≡ Var(XB,i) = σ2(1/n + ρ(1 − 1/n)) and Std Dev(XA − XB) = σ
√(1/kA + 1/kB)(1/n + ρ(1 − 1/n)). Thus, for a given alternative µA − µB = ∆, the non-
centrality parameter and degrees of freedom, respectively, are

Φ = ∆/σ√(1/kA + 1/kB)(1/n + ρ(1 − 1/n)) and r = kA + kB − 2. (4)

Placing these values of Φ and r into Eq. 3 gives, for two-sided testing,

1 − β = 1 − t−1
kA+kB−2,∆/σ√(1/kA+1/kB)(1/n+ρ(1−1/n))[tkA+kB−2(1 − α/2)]. (5)

Appendix 1 contains documented SAS (SAS Institute, Cary, NC) code to implement
the power calculation from Eq. 5. The larger ρ is, the smaller Φ in Eq. 4 becomes,
thus greater intracluster dependency reduces the noncentrality parameter and corre-
sponding power. Everything else being equal, increasing n, kA, and/or kB increases
the noncentrality parameter in Eq. 4 and power. For a fixed number of clusters kT

= kA + kB, the sum (1/kA + kB) is minimized, and thus the noncentrality parameter in
Eq. 4 is maximized when kA = kB. For a fixed N, larger values of kA and kB will
increase r and increase Φ and thus increase power.

To illustrate computation of power using Eq. 5, return to example 1, with kA

= 100 high-crime and kB = 300 low-crime neighborhoods in New York City; n = 10
persons sampled from neighborhoods in both arms. Suppose the outcome of inter-
est, mental health function, has a standard deviation of σ = 20, intraneighborhood
correlation of ρ = 0.40, and an overall mean of 50. We wish to test the null hypoth-
esis with a two-sided α = .05 and be able to detect a difference of ∆ = 5 between
the mean scores of persons in high-crime neighborhoods and those in low-crime
neighborhoods.

In this example, illustrated in Fig. 3, Φ = ∆/σ√(1/kA + 1/kB)(1/n + ρ(1 − 1/n))
= 5/20√(1/100 + 1/300)(1/10 + .04(1 − 1/10)) = 3.19, r = kA + kB − 2 = 100 + 300 −
2 = 398, and the rejection region [tkA+kB−2[1 − α/2)] is [t398(1 − .025)] = 1.96. From
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FIGURE 3. Rejection region for t test of example 1 with r = 398 df and α = .05 and corresponding
type II error under alternative hypothesis with noncentrality parameter
Φ = 3.19 = 5/20√(1/100 + 1/300)(1/10 + 0.4(1 − 1/10))

Eq. 5 then, 1 − β = 1 − t−1
398,3.19[1.96] which since 398 is greater than 120, also equals

Z−1[3.19 − 1.96] = Z−1[1.20] = 0.88. This study has 88% power to detect ∆ = 5. By
contrast, a naı̈ve power estimate based on the false assumption that all individuals
in the same exposure cluster were independent (i.e., ignoring the intraclass correla-
tion) would falsely estimate the power to be virtually 1.

POWER FOR STUDIES WITH UNEQUAL GROUP SIZES
AND/OR NUMBERS OF CLUSTERS PER ARM

In the setting of power for studies with unequal group sizes and/or numbers of
clusters per arm, since nA ≠ nB, the variances of the cluster means are not equal;
Var(XAi) = σ2(1/nA + ρ(1 − 1/nA)) and Var(XBi) = σ2(1/nB + ρ(1 − 1/nB)). Because of
these unequal variances, Eq. 2 is used to test the null hypothesis. The test statistic
theoretically does not have an exact t distribution under either the null or alterna-
tive hypothesis, but in both settings can be approximated by a t distribution.13 Di
Santostefano and Muller14 found that a close approximation to the power obtains
from Eq. 3 with noncentrality parameter Φ̃ = ∆/√UA + UB where UA = σ2(1/nA

+ ρ(1 − 1/nA))/kA (the variance of XA), UB = σ2(1/nB + ρ(1 − 1/nB))/kB (the variance of
XB), and degrees of freedom

r̃ = � (U2
A)

kA + 1
kA − 1

+ 2UAUB + (U2
B)
kB + 1
kB − 1 �/� (U2

a)
kA + 1

(kA − 1)2
+ (U2

B)
kB + 1

(kB − 1)2 �. (6)
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Briefly, Φ̃ is ∆/Std Dev(XA − XB), a direct implementation of Eq. 3, while r̃ is the

expectation of
(S2

A/kA + S2
B/kB)

2

(S4
A/(k

2
A(kA − 1)) + S4

B/(k
2
B(kB − 1)))

given that SA and SB are random

variables. With Φ̃ and r̃ incorporated, the power is approximately

1 − β = 1 − t−1
r̃,Φ[tr̃(1 − α/2)]. (7)

Appendix 2 contains a documented SAS program to implement the power calcula-
tion in Eq. 7. While patterns are complicated, in general power is maximized when
UA = UB . If feasible, for a fixed N and kA = kB, one obtains better power with nA =
nB and using Eq. 2 versus nA ≠ nB with Eq. 3. In other words, if the number of
exposure clusters is equal in both arms (and assuming the costs of individuals in
each arm is the same) from a power standpoint, it is optimal to have the number
of subjects in the clusters of each arm be equal.

To illustrate computation of power from Eq. 7, return to example 2, the postin-
tervention mean risk behavior score comparison between 300 subjects randomized
into kA = 30 support cluster groups of exposure size nA = 10 subjects and 300 differ-
ent subjects randomly placed into kB = 10 support cluster groups of exposure size
nB = 30 subjects each. From analysis of the data from Susser et al.,2 the standard
deviation of the sexual activity score is about one unit, a difference of ∆ = 0.30
units corresponds to a 50% reduction in human immunodeficiency virus (HIV)
transmission activities, and the correlation of subjects in the same support group is
ρ = 0.30. Then,

UA = σ2(1/nA + ρ(1 − 1/nA))/kA = 1(1/10 + .3(1 − 1/10))/30) = 0.0123

UB = σ2(1/nB + ρ(1 − 1/nB))/kB = (1(1/30 + .3(1 − 1/30))/10) = 0.0323

Φ̃ = ∆/√UA + UB = 0.30/√0.0123 + 0.0323 = 1.42

r̃ = � (0.0123)2 31
29

+ 2(0.0123)(0.0323) + 0.0323)2 11
9 �/� (0.0123)2 31

(29)2
+ (0.0323)2 11

(9)2 �
= 15.14 and [t15.14(1 − 0.05/2)] = [t15.14(1 − 0.05/2) = 2.13.

Thus, as illustrated in Fig. 4, from Eq. 7, 1 − β = 1 − t−1
15.14,1.42[2.13] = 0.26; this study

would have limited power to detect a reduction of 0.30 units of behavior from the
intervention. By contrast, a naı̈ve power estimate for a comparison made assuming
individuals in the same exposure cluster were independent of each other would
falsely estimate the power to be �1.

One might argue that intraclass correlation ρA could be higher in the smaller
support groups with 10 individuals than the intraclass correlation ρB in support
groups with 30 individuals. If this is true, then application of the formula of Eq. 7
incorporating ρA to obtain UA and ρB to obtain UB obtains valid estimates.15

DISCUSSION

We present power estimates for unbalanced cluster exposure designs with continu-
ous outcomes using the noncentral t distribution. In both examples (as will be the
case in general), use of naı̈ve formulas that ignored intracluster correlation greatly
overestimated study power. Many previous sample size estimates for clustered de-
signs use more easily calculated Z distribution and central t approximations of the
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FIGURE 4. Rejection region for t test of example 2 with r = 15.14 df, α = .05, and corresponding
type II error under alternative hypothesis with noncentrality parameter Φ = 1.43.

noncentral t distribution. While noncentral t and Z distribution differences are of-
ten minor, except perhaps for small values of r, with current computers and soft-
ware, the need for easy calculation diminishes, and exact answers from noncentral
t distributions are feasible.

We considered the intraclass correlation ρ itself to be a nuisance parameter of
no interest. In some settings, modeling/estimation of this correlation (or, equiva-
lently, of variance components) may be desired.10,11,16 While the unbalanced designs
complicate such estimation, nested ANOVA models could be used to do this. How-
ever, lack of a statistically significant ρ value against ρ = 0 should not be used to
assume subjects are independent for the purposes of comparing exposure arms.
Intraclass correlation estimates often have high variability, and assuming subjects
are independent based on such a test of ρ = 0 can result in the true type 1 error of
the test being much larger than the nominal type 1 error.15,16

We gave power estimates for two-sample t-test comparisons between averages
of the cluster means in each exposure arm. Another comparison approach that
might give different results if nA ≠ nB would be nested one-way ANOVA models that
partition variance. However, this may be difficult in practice as standard ANOVA
algorithms require balanced designs (nA = nB); thus, complicated Sattertwaite13 ad-
justments would need to be made. Furthermore, while two-sample t-tests are robust
to different intraclass correlations in exposure arms, adjusted nested ANOVAs
would not be. While the power of such nested ANOVAs would be difficult to
derive, we believe they would be very close to that of two-sample t tests for most
settings. Which specific procedure had better power would be a complicated func-
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tion of ρ, nA, and nB. If one believes a nested ANOVA comparison improves power
over the two-sample t test, power estimates in Eq. 5 could be used to obtain conser-
vative power estimates for that test.

Estimation of Minimal Sample Size and Minimal
Detectable Differences
The formulas for power given can be transformed into algorithms to estimate re-
quired sample size; Eqs. 5 and 7 can be incorporated into software that iteratively
estimates minimal values for n, nA, nB, kA, kB or those needed to attain given power.
But, the large number of parameters and wide range of potential constraints (as
discussed below) complicate presentation of universal formulas for sample size
and detectable differences. Still, in most settings, repeated implementation of Eqs.
5 and 7 through the code in Appendices 1 and 2 can feasibly find minimal sample
sizes or detectable differences that will give a specified power.

Let us return to example 1 with kA = 100 high-crime and kB = 300 low-crime
neighborhoods, between-person standard deviation σ = 20, within-neighborhood
correlation of ρ = 0.4, and minimal difference ∆ = 5. We need the minimum cluster
size n that gives at least 80% power. Repeated application of Eq. 5 with the code
of Appendix 1 finds that n = 3 provides 79.7% power, while n = 4 provides 83.0%
power. We can also return to example 2, with nA = 10 and nB = 30 subjects in an
intervention arm for treatments A and B, respectively; between-person standard
deviation of σ = 1; and within-intervention correlation of ρ = 0.3. Assuming it is
necessary to allocate equal numbers of subjects to each treatment and it is necessary
to have �80% power, repeated application of Eq. 7 finds that 1,200 subjects in
each arm (or 2,400 total) (kA= 120 and kB = 40) gives 79.9% power.

Similar repeated applications of Eqs. 5 and 7 can find minimal values of ∆ (to
a reasonable number of significant digits) giving a desired power. In examples 1
and 2, respectively (with the original numbers of subjects and clusters presented in
the Introduction), the minimal values of ∆ to two significant digits that can be
detected with 80% power are ∆ = 4.4 for example 1 and ∆ = 0.64 for example 2.

Implications for Study Design

Optimization by Increasing kA and kB and Having kA = kB If ρ > 0, then from
both Eq. 5 and Eq. 7, given N is fixed, power is maximized by making kA and kB

as large as possible. This minimizes noncentrality parameters Φ = ∆/σ
√(1/kA + 1/kB)(1/n + ρ(1 − 1/n)) and Φ̃ = ∆/√UA + UB = ∆ /√σ2(1/nA + ρ(1 − 1/nA))/
kA + σ2(1/nB + ρ(1 − 1/nB))/kB. With equal n, in both exposure arms, balanced clus-
ters (with kA = kB) maximizes power again by maximizing the noncentrality parame-
ter. However, sometimes balanced allocation is not possible or cost-effective.

Optimization of Power Through Balance of Study Subjects If N, kA, and kB are
fixed, then for ρ < 1, the optimal choice for nA and nB to maximize power is one
that balances the number of subjects across arms with nAkA = nBkB. This follows as
the variance of the arm means difference ρ(1/kA + 1/kB) + (1 − ρ)(1/(kAnA) + 1/(N −
nAkA)) is minimized when nAkA = nBkB. In example 1, with 300 subjects from 100
high-crime neighborhoods compared to 900 from 300 other neighborhoods (n = 3
subjects/neighborhood), the power to detect a difference of ∆ = 5 when σ = 20, ρ =
0.4, and α = .05 from Eq. 5 was 79.9%. Had the 1,200 (300 + 900) subjects been
allocated equally to each arm with 600 in low-crime neighborhoods (nA = 6) and
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600 in other neighborhoods (nB = 2), then from Eq. 7, the power to detect this
difference with the same ∆, σ, and α increases to 82.8%.

Optimal Allocation of Clusters When nA ≠ nB If by design nA ≠ nB, an ap-
proximate optimal allocation to minimize total number of subjects needed occ-
urs when kA � kB(nB/nA)√(1 + ρ(nA − 1))/(1 + ρ(nB − 1))) which results in
√(1 + ρ(nA − 1))/(1 + ρ(nB − 1)) subjects in arm A for every subject in arm B. In ex-
ample 2, with nA = 10 and nB = 30, this corresponds to kA = 1.61(kB). While making
kA exactly 1.61 times as large as kB might be difficult in practice, if 1.5 times as
many subjects were allocated to exposure arm B than to exposure arm A, then from
Eq. 7 only 2,250 total subjects with kA = 90 (for 900 subjects total in A) and kB =
45 (for 1,350 subjects in B) will give 79.9% power. This compares to 2,400 subjects
needed to obtain comparable power with 1,200 subjects in each arm, as was shown
previously.

Cost-Beneficial Bound to Number of Subjects per Cluster For fixed numbers of
clusters in each treatment arm k or (kA and kB), a cost-beneficial upper limit for the
number of subjects in each cluster n may be (5/ρ) − 5. The standard deviation of
arm differences is proportional to √ρ + (1 − ρ)/n and bounded below by √ρ. If ρ2 is
much smaller than ρ, then with n = (5/ρ) − 5, √ρ + (1 − ρ)/n � (1.1√ρ) which is
close to √ρ, the lower bound for variance. Even huge increases in n will not lower
the standard deviation much. In example 1 with ρ = 0.4, an upper limit for n by
this paradigm would be �8. For ρ = 0.1, the upper limit for n would be �46. In
other words, if the intraclass correlation is ρ = 0.4, increasing the number of sub-
jects per cluster beyond 8 may not be beneficial from a power standpoint. If ρ =
0.1, then increasing the number of individuals per cluster beyond 46 may not be
beneficial from a power standpoint. Figure 5 illustrates these points and the effect

FIGURE 5. Relative variance of comparison of groups with respect to number of subjects per
cluster.
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on standard deviation of comparisons from increasing n in a study with ρ = 0.4
and ρ = 0.1. If ρ2 is not much smaller than ρ (i.e., when ρ is close to 1), then the
cost-benefit variance reduction limit occurs with n even smaller than (5/ρ) − 5. If
costs of sampling clusters and individuals are available, optimal numbers of clusters
and individuals to sample could be obtained by extending approaches used for
balanced designs.10,11

Futility Limit to Number of Subjects per Cluster If the number of clusters kA and
kB are fixed, then Φ′ = ∆/σ√ρ(1/kA + 1/kB) is a lower bound on the noncentral-
ity parameter that will not be exceeded no matter how large n (or nA and nB) are
made. Thus, an upper bound on power from increasing number of subjects
per cluster is 1 − β, where β = t−1

r,Φ′[tr(1 − α/2)]. Returning to example 1, Φ′ =
5/20√0.4(1/100 + 1/300) = 3.42. Thus, if testing is at α = .01, an upper limit for
power is 1 − t−1

398,3.42[t398.995] = 0.80, or in other words, no matter how many subjects
per cluster are recruited, it is impossible to attain 90% power.

Uneven Numbers of Subjects per Cluster Sometimes, adjustments may be needed
due to uneven cluster sample sizes. Often, it is not possible to maintain the same
number of individuals in each cluster within study groups, that is, to hold n or nA

and/or nB constant. This could occur due to limited subjects available for some
clusters, nonresponse, or other data loss. One approach, extending an idea sug-
gested by Donner et al.,4 is to input n into Eq. 5 or nA and nB into Eq. 7, where
these are the average sizes across the k, kA, and kB clusters. Should the cluster sizes
vary greatly within the exposure arms, then it may be better to use anticipated
harmonic means, nH

A in Eq. 5 or nH
A and nH

B in Eq. 7.15 Since the exact cluster sizes
would likely be unknown in advance and would require numerous terms, such
approximations to Eqs. 5 and 7, rather than power formulas incorporating specific
cluster sizes, are probably more feasible for the variable cluster size setting.

Complex Samples In many settings (particularly public use data sets), hierarchical
and/or weighted sampling schemes were used to select the sample. Appendix 3 de-
scribes why sampling weights may not need to be considered and how to estimate
ρ to input into Eqs. 5 and 7 in these settings.

Variability of Exposure Within Cluster The methods of this article require all
members of the cluster to have the same exposure status. Multilevel models might
be needed to analyze cluster studies with exposure that varies within cluster on an
individual basis.10,11 While specific power estimation approaches have not yet been
presented for clusters of individuals with different exposure status, they seem feasi-
ble by extending methods for stratified comparisons.

SUMMARY

Unbalanced cluster study designs are becoming more common in health outcomes
and epidemiologic research, but tools for power/sample size estimation and optimal
design are limited. The formulas of Eqs. 5 and 7 estimate power for continuous
outcomes in cluster exposure studies with unequal numbers of clusters and/or un-
equal numbers of subjects per cluster in each arm. Software to implement these
algorithms is given in Appendices 1 and 2. From iterative application of Eqs. 5 and
7, minimal sample size and minimal detectable difference can be obtained. But Eqs.
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5 and 7 may not directly apply to binomial outcomes. As Appendix 3 describes,
Eqs. 5 and 7 may extend to testing of certain types of hypotheses in hierarchical
weighted samples. When feasible, power is generally optimized by having the same
number of clusters in each arm and (irrespective of numbers of clusters in each
arm) the same total number of subjects in each arm. For cost-effectiveness, the
upper limit for numbers of subjects per cluster may be n = 5/ρ − ρ or smaller.

APPENDIX 1

SAS Program to Implement the Power Formula of Equation 5
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APPENDIX 2

SAS Program to Implement the Power Formula of Equation 7
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APPENDIX 3

Application to Complex Sampling Schemes
Many cluster samples used in health outcomes and epidemiologic research are ob-
tained from complex weighted sampling schemes with hierarchical levels of clusters.
Examples include large public use data sets such as the Medicare Beneficiary Survey
(cf. Olin et al.17). In some settings, the formulas of Eqs. 5 and 7 can be applied to
complex hierarchical weighted samples.

Hierarchical Clustering Sometimes multiple (hierarchical) levels of clustering ex-
ist. We could, for example, consider a study of violence witnessed by schoolchildren
in rural and urban areas. The study has two levels of clusters; 150 ZIP codes are
randomly chosen, kA = 50 from urban areas and kB = 100 from rural areas. Within
each ZIP code, two schools are randomly chosen (schools are clustered within ZIP
code), and three students are randomly selected from each school (students are
clustered within school). A standardized survey instrument is used to obtain a “vio-
lence witnessed” score from each student. ZIP code is the first level of clustering,
and school is the second level. By convention, the first level of clustering is denoted
the “primary sampling unit.” Due to the lower levels of clustering, some pairs of
observations in a primary sampling unit have different correlations with each other.
In the previous study, among the six students in the same ZIP code, those from the
same schools have a higher correlation with each other than do those from different
schools.

Let ρ′ be the average correlation between two observations in a primary sam-
pling unit. Then (no matter how many levels of sampling), due to the concept of
exchangeability, the formulas of Eqs. 5 and 7 can be used with ρ′ substituted for ρ.
While ρ′ may be difficult to estimate, sometimes it can be calculated from available
information. In the previous study, let the correlation of violence witnessed between
two students in different schools in the same ZIP code be 0.1 and the correlation
between two students from the same school be 0.5. Then, since for each student
two of the other five students in the primary sampling unit (ZIP code) will be from
the same school, ρ′ = 0.26 = 2/5*0.5 + 3/5*0.1.

Weighted Sampling In many cluster sampling schemes, individuals are not sam-
pled with the same probability. Consider example 1 of this article, with 10 individu-
als chosen from 400 neighborhoods (100 low crime and 300 high crime). Since
neighborhoods have different sizes, individuals from smaller neighborhoods have a
greater probability to be sampled than do those from larger neighborhoods. For
example, if neighborhood I has 1,000 persons and neighborhood I′ has 10,000
persons, then the probability for a person to be sampled in I is fI = 0.01, or 10
times greater than fI′ = 0.001, the probability for a person to be sampled in I′.

Sometimes, sampling weights wi are assigned to cluster i to obtain weighted
means that adjust for this imbalance. If, in example 1, one wanted to obtain the
average cognitive score of all persons living in low- and high-crime neighborhoods,

this would be computed as XA,W =
∑

i

wA,iXA,i

∑
i

wA,i

and XB,W =
∑

i

wB,iXB,i

∑
i

wB,i

, where wA,i and wB,i

are the number of people in the respective neighborhoods. So long as the sampling
weights wi are assigned at the cluster level and the tests concern hypotheses of
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neighborhood level effects, we argue that sampling weights do not need to be in-
cluded, making Eq. 2 a valid test statistic and Eqs. 5 and 7 valid power estimators.

Under this design, for each cluster in A, XA,i = uA + γA,i + εA,i, where γA,i is the
effect that the ith cluster and has expectation 0 and variance ρσ2 while εi,A is the
mean of individual errors and has expectation zero and variance (1 − ρ)σ2/nA. A
similar representation holds for each cluster in B. Since estimation of uA is the goal,
Eq. 2 provides the best estimate with minimal variance. Unless γA,i (and γB,i) are
correlated with neighborhood size, wA,i (and wB,i) are not needed in the analysis. If
γA,i (and γB,i) are correlated with neighborhood size, then neighborhood size should
be adjusted for as a covariate in multivariate analysis rather than through inclusion
of sample weights. The methods described in this article, however, do not apply if
individual sampling weights vary within cluster and/or direct comparison of
weighted arm means is the objective.
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